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Abstract. A rate-independent model for the quasi-static magneto-elastic evolution of a magnetic shape-memory single crystal
is presented. In particular, the purely mechanical Souza–Auricchio model for shape-memory alloys is here combined with
classical micro-magnetism by suitably associating magnetization and inelastic strain. By balancing the effect of conservative
and dissipative actions, a nonlinear evolution PDE system of rate-independent type is obtained. We prove the existence of
so-called energetic solutions to this system. Moreover, we discuss several limits for the model corresponding to parameter
asymptotics by means of a rigorous Γ-convergence argument.
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1. Introduction

Magnetic shape-memory alloys (MSMAs) are active materials exhibiting an amazing behavior for com-
parably large recoverable strains can be induced by thermo-mechanical and/or magnetic treatment. As
ordinary shape-memory alloys, MSMAs are super-elastic at low temperatures as strains up to 8 % are
recovered without plasticization. At higher temperatures, they show the classical shape-memory effect:
after a loading cycle residual inelastic strains can be recovered by a thermal treatment. This behavior
is the effect of a structural phase-change in the material from a high symmetry crystallographic variant
called austenite (predominant at high temperature and low stresses) and many low symmetry variants
called martensites (predominant at low temperatures or high stresses) [19].

A further property of MSMAs with respect to ordinary SMAs is that they can be mechanically acti-
vated at distance by applying moderate magnetic fields. This is the so-called magnetic shape-memory
effect and is caused by the ferromagnetic nature of the crystallographic variants in MSMAs. In partic-
ular, the martensitic phase of MSMAs is ferromagnetic: the magnetization is organized in domains in
which the magnetization vector tends to align with a preferred direction, the so-called easy axis. Upon
the application of a magnetic field, a redistribution occurs as domains with specific easy axes are more
favorably oriented toward the applied field. This redistribution is operated by domain wall motions, mag-
netization vector rotation (growth of domains with magnetization direction close to the field direction),
and martensitic variant reorientation. This last mechanism is specific of MSMAs and consists in the
nucleation of a more favorably magnetically oriented martensitic variant at the expense of others. This,
in particular, couples the mechanics of the material with its micro-magnetic state and it is responsible
for the occurrence of recoverable magnetically induced inelastic strains.

The interest in the possible applications of the unique material behavior of MSMAs is evident. As
such, a vast engineering literature is nowadays available on MSMAs. We shall mention, without claim
of completeness, the papers [23–25,27,34]. One has to mention that all models proposed (as well as all
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applications developed) so far deal specifically with MSMAs single crystals. In fact, the possibility of
producing a device (actuator) based on a MSMA polycrystal seems critical due to the extreme brittleness
of the materials investigated so far.

In [13], a three-dimensional phenomenological model for MSMA single crystals is advanced. The idea
there is to extend to MSMAs the well-admitted Souza–Auricchio model for SMAs [7–9,45]. The latter
is a phenomenological, internal-variable-type model capable of describing both the shape memory and
the superelastic effect. The model has been originally proposed in the small-strain regime by Souza et al.
[45] and then combined with finite elements by Auricchio and Petrini [7,9]. The interest in this model
is motivated by its robustness with respect to parameters and discretizations despite its simplicity: in
the three-dimensional situation, the constitutive behavior of the specimen is determined by the knowl-
edge of just 8 material parameters (note that linearized thermo-plasticity with linear hardening already
requires 5 material parameters). These parameters are directly available for they can be easily fitted
from experimental data. The Souza–Auricchio model has been analyzed from the viewpoint of existence
and approximation of solutions of the three-dimensional quasi-static evolution problem in [6]. Later on,
convergence rates for space-time discretization of the problem were obtained in [37,38]. Extensions of
the original Souza–Auricchio model to incorporate more refined material descriptions in the direction
of non-symmetric material behavior [12], residual plasticity [10,11,16], finite strains [1,17,18], thermal
evolution [28,29,39,36], and space discretizations [37,38] are also available.

The MSMA model in [13] relies on directly linking the magnetization M of the body with its inelas-
tic strain z = ε(u) − C

−1σ (here ε(u) is the total strain, C is the elasticity tensor, σ is the stress). In
particular, an affine relation z �→ Az that associates with a strain z the corresponding easy axis Az is
introduced. Then, the magnetization is explicitly given by the position M = αmsatAz where α is the
scalar proportion of domains oriented in the positive direction with respect to Az. Namely, M is given
in terms of other variables and hence does not appear into the final PDE system. This modeling choice
may be motivated by invoking some high magnetic anisotropic behavior of the MSMA crystal forcing
the magnetization vectors to be strongly attached to the easy axes. In particular, magnetization rotation
is neglected in [13]. Some mathematical analysis on this model is reported in [13] whereas numerical
simulations are presented in [3–5].

In the present paper, we extend the MSMA model of [13] by allowing for magnetization rotations. In
particular, we keep M as an independent state variable and directly combine the Souza–Auricchio model
with the classical micro-magnetics theory [14,32,33]. The thermomechanical coupling of the model is ren-
dered through the anisotropy magnetic energy term which favors (though not imposing) the alignment
of the magnetization M with the specific local easy axis of the martensitic phase. Moreover, dissipative
evolution mechanisms are included for both mechanical (as in the Souza–Auricchio model) and magnetic
variables (as in ferromagnetism).

Our interest in the present model extension is twofold. On the one hand, we aim at presenting a
complete description of the MSMA behavior, taking into account all the relevant phenomenology. In par-
ticular, we directly include the treatment on the demagnetization field instead of assuming the existence
of a suitable demagnetization tensor as in [13]. This was indeed a major drawback of the simplification
from [13] where the demagnetization response of the material was taken to be independent of the mechan-
ical behavior of the body. We complement our modelization from Sect. 2 with the existence analysis for
a suitably weak (energetic) solution of the related quasi-static evolution problem in Sect. 3.

On the other hand, we aim at providing a sort of cross-validation of the proposed MSMA model by
explicitly proving that the well-validated mechanical Souza–Auricchio and micro-magnetic models can be
rigorously obtained from the present complete one by means of parameters asymptotics. This, together
with the discussions in [3–5,13], shall provide significant evidence of the interest of this perspective. The
parameters asymptotics analysis is performed in Sect. 4 by means of a specific Γ-convergence tool for
rate-independent evolution developed in [41].



Vol. 64 (2013) A macroscopic model 345

Before moving on we shall recall the phenomenological models of internal-variable type for MSMA
single crystals by Hirsinger and Lexcellent [22] and Kiefer and Lagoudas [27]. These two models, albeit
basically derived from same principles, differ from ours as they are essentially restricted to two dimensions
(or two martensitic variants). Both these models assume the scalar local proportion of one martensitic
variant with respect to the other as an internal variable. Moreover, the choice for the specific energy is
these models are different from ours and comparably more complex. One has also to mention that no
mathematical results are presently available for these models.

2. Model description

We shall provide in this section some detail on the proposed MSMA model. Let the reference configu-
ration Ω ⊂ R

3 be an open bounded set with smooth boundary ∂Ω. We shall use the symbol : for the
standard contraction product between matrices whereas · denotes the scalar product of vectors and | · |
stands for the corresponding norms.

Let u : Ω → R
3 be the displacement of the body from the reference configuration. Working within the

small-strain regime, we decompose the linearized strain ε(u) = (ε(u))ij = (ui,j + uj,i)/2 ∈ R
3×3
sym into the

elastic part εel ∈ R
3×3
sym and the inelastic (or transformation) part z ∈ R

3×3
dev as

ε = εel + z. (2.1)

Here, R
3×3
sym denotes the set of symmetric 3-tensors whereas R

3×3
dev ⊂ R

3×3
sym is the subset of deviatoric sym-

metric tensors. The inelastic strain z describes the strain associated with the transformations between
the parent phase (austenite and twinned martensite) and the product phase (detwinned or single-variant
martensite).

The magnetization of the body is described by M : Ω → R
3 subject to the constraint

|M(x)| = msat a.e. x ∈ Ω,

where msat > 0 is the saturation magnetization of martensites, assumed to be constant for all variants.
The phase state of the material is described by means of a vector of phase proportions λ ∈ R

m whose
components are subject to the simplicial constraint

λ ∈ Λ =
{
λ ∈ R

m : λi ≥ 0, λ1 + · · · + λm = 1
}
.

The scalar λi represents the proportion of the i th martensitic phase. Note that, for simplicity, by assum-
ing a suitable low temperature, no austenite will be considered in this model. We focus here on a single
crystal of an alloy presenting a magnetically uniaxial martensitic structure. Namely, we assume that each
martensite presents a single easy axis. This is common to cubic-to-tetragonal (m = 3) and cubic-to-ortho-
rhombic (m = 6) systems such as Ni2MnGa, FePd, and FePt among many others.

2.1. Mechanical modeling

We recall here the basic assumptions of the purely mechanical constitutive model for shape-memory alloys
introduced by Souza et al. [45] and later refined by Auricchio and Petrini [7–9].

In the Souza–Auricchio model, for suitably low temperatures (that we consider to be fixed throughout),
the mechanical free energy of the body is simply given by the plasticity-like expression

ψSA(ε, z) =
1
2
(ε− z):C:(ε− z) +

h

2
|z|2.

Here, C stands for the fourth-order symmetric elasticity tensor, h > 0 is a hardening modulus, and εL > 0
is the maximal strain modulus obtained by alignment of martensitic variants. Given the phase proportion
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λ ∈ Λ, we shall impose the transformation strain to take the explicit form

zλ = λ1z1 + · · · + λmzm (2.2)

where zi are the transformation strains related to pure variants. In particular, for cubic-to-tetragonal
systems, by fixing a frame aligned to the reference austenitic cubic structure, we have

z1 =
εL√

6

⎛

⎝
−2 0 0
0 1 0
0 0 1

⎞

⎠ , z2 =
εL√

6

⎛

⎝
1 0 0
0 −2 0
0 0 1

⎞

⎠ , z3 =
εL√

6

⎛

⎝
1 0 0
0 1 0
0 0 −2

⎞

⎠

whereas cubic-to-orthorhombic variants correspond to

z1 =
εL

cγ

⎛

⎝
1 + γ 0 1 − γ

0 −2 − 2γ 0
1 − γ 0 1 + γ

⎞

⎠ , z2 =
εL

cγ

⎛

⎝
1 + γ 0 γ − 1

0 −2 − 2γ 0
γ − 1 0 1 + γ

⎞

⎠ ,

z3 =
εL

cγ

⎛

⎝
1 + γ 1 − γ 0
1 − γ 1 + γ 0

0 0 −2 − 2γ

⎞

⎠ , z4 =
εL

cγ

⎛

⎝
1 + γ γ − 1 0
γ − 1 1 + γ 0

0 0 −2 − 2γ

⎞

⎠ ,

z5 =
εL

cγ

⎛

⎝
−2 − 2γ 0 0

0 1 + γ 1 − γ
0 1 − γ 1 + γ

⎞

⎠ , z6 =
εL

cγ

⎛

⎝
−2 − 2γ 0 0

0 1 + γ γ − 1
0 γ − 1 1 + γ

⎞

⎠

where γ > 0 is a specific alloy-dependent crystallographic parameter and cγ =
√

8(1 + γ + γ2) is a
normalization constant letting |zi| = εL. Note that, by assuming |zi| = εL, one readily deduces that
|zλ| = |λ1z1 + · · · + λmzm| ≤ εL and that equality in the latter occurs for pure variants only.

The dissipative mechanical behavior of the body for the Souza–Auricchio model is described by the
dissipation (pseudo-)potential RSA|żλ| where RSA > 0 is a transformation radius. By exploiting the
constraint (2.2), we hence specify the mechanical dissipation of our model as

Rλ|λ̇|
where Rλ is directly computed from RSA (in three dimensions) as Rλ =

√
3/2εLRSA.

Eventually, the purely mechanical constitutive equations for the material are given by the system

σ = C(ε(u) − zλ), (2.3)

∂Rλ|λ̇| + ∂λψSA(ε(u), zλ) 	 0. (2.4)

Here and in the following, the symbol ∂ stands for the classical (and possibly partial) subdifferential in
the sense of convex analysis.

2.2. Micro-magnetic modeling

In the classical theory of micro-magnetism [14,31–33], a specific energy term is associated with each
phenomenon occurring in the magnetization of the material. In particular, given the external magnetic
field H(t), we let the magnetic energy be defined as

Ψmagn(t,M) =
μ0

2

∫

R3

|∇vM |2dx− μ0

∫

Ω

H(t)·Mdx+KM

∫

Ω

|∇M |2dx. (2.5)

The first term in the above right-hand side is the magneto-static energy and corresponds to the energy
of the demagnetization field ∇vM generated by the magnetization M in all of R

3. The constant μ0 is the
vacuum magnetic permeability and the potential vM is governed by the Maxwell equation

div(−μ0∇vM +MχΩ) = 0 in R
3 (2.6)
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where χΩ : R
3 → {0, 1} is the characteristic function of Ω (namely χΩ = 1 in Ω and χΩ = 0 elsewhere).

The magnetic body tries to minimize it by arranging its domain structure in such a way as to produce a
minimal exterior field. In the sequel, (2.6) is considered in the weak form

v ∈ H1(R3) is such that μ0

∫

R3

∇v·∇φdx =
∫

Ω

M ·∇φdx ∀φ ∈ H1(R3). (2.7)

The second term in the right-hand side of (2.5) is the Zeeman energy encoding the interaction between
the applied external field H and the magnetization M . Finally, the last term in (2.5) is the exchange
energy (KM > 0 is the exchange constant) and describes the ability of the material to create domain
structure by penalizing spatial changes of M .

The magnetization M is assumed to present a dissipative dynamics driven by the (pseudo-)potential
of dissipation on L1(Ω,R3)

RM

∫

Ω

|Ṁ |dx

where RM > 0 is a suitable activation radius. Eventually, the purely mechanical constitutive relation for
the materials is given by the inclusion

∂

⎛

⎝RM

∫

Ω

|Ṁ |dx
⎞

⎠ + ∂MΨmagn(t,M) 	 0.

where the subdifferential is now taken with respect to the L2(Ω; R3) metric.

2.3. Magneto-mechanical coupling

The anisotropic behavior of the magnetization in MSMAs plays the role of coupling magnetic and mechan-
ical effects. Each martensitic variant is associated with a preferred magnetization direction and is hence
favored by the application of a specific magnetic field. This results in a magnetically induced martensitic
reorientation effect. On the contrary, by mechanically reorienting the martensitic phase pattern of the
medium, one is changing its anisotropic magnetic response.

Given the phase proportion λ ∈ Λ, we let the (directed) easy axis of the material be defined as

Aλ = A1λ1 + · · · +Amλm

where Ai corresponds to the easy axis of the i-th variant.
The anisotropy magnetic energy is minimized by developing a domain structure such that the mag-

netization is preferably aligned with the easy axis. Hence, the anisotropy energy term is chosen as

−μ0Kani

∫

Ω

(M ·Aλ)2dx,

Kani > 0 being the anisotropy constant. Note that |M ·Aλ| ≤ |M ||Aλ| ≤ |M | so that the anisotropy
magnetic energy term is minimized for M = msatAi and λ = λi.

2.4. Total energy and dissipation

We shall be concerned with a quasi-static evolution of the MSMA sample, namely

∇ · σ + f = 0 in Ω (2.8)
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for a given body force f : Ω → R
3 along with the boundary conditions

u = 0 on Γ0, σn = g on Γtr. (2.9)

Here, Γ0 ⊂ ∂Ω has a positive surface measure, n is the unit external normal to the boundary ∂Ω, Γtr =
∂Ω \ Γ0, and g : Γtr → R

3 is a given traction.
To this aim, we consider the admissible set of displacements

U :=
{
u ∈ H1(Ω,R3) : u = 0 on Γ0

}
,

we denote by U ′ its dual, and by 〈·, ·〉 the corresponding duality pairing. As for phase proportions, we
will let λ belong to

L :=
{
λ ∈ BV (Ω,Rm) : λ ∈ Λ a.e. in Ω

}
.

Then, we associate with λ ∈ L the inelastic strain zλ defined by (2.2). We also consider the admissible
set for the magnetizations to be defined by

M :=
{
M ∈ H1(Ω,R3) : |M | = msat a.e. in Ω

}
.

By letting t ∈ [0, T ] �→ f(t) ∈ L2(Ω; R3) and t ∈ [0, T ] �→ g(t) ∈ L2(Γtr; R3) be given, we classically
define the total load � : [0, T ] → U ′ by

〈�(t), u〉 :=
∫

Ω

f(t)·u dx+
∫

Γtr

g(t)·u dΓ ∀u ∈ U , t ∈ [0, T ].

Moreover, we assume to be given the magnetic field t ∈ [0, T ] �→ H(t) ∈ L2(Ω; R3).
According to the above discussion, the total energy we are concerned with is given by the functional

Ψ : [0, T ] × U × L × M −→ R as

Ψ(t, u, λ,M) =
∫

Ω

ψSA(ε(u), zλ)dx− 〈�(t), u〉

+
μ0

2

∫

R3

|∇vM |2dx− μ0

∫

Ω

H(t)·Mdx+KM

∫

Ω

|∇M |2dx

− μ0Kani

∫

Ω

(M ·Aλ)2dx+Kλ

∫

Ω

|∇λ|.

The total variation of ∇λ has been explicitly included in the energy in order to give rise to a scale effect
(modulated by the positive constant Kλ) with the aim of penalizing martensitic phase boundaries and
possibly describing the occurrence of a specific twinning length scale. Let us remark that, clearly, λ need
not to be continuous and sharp interfaces are admitted. The occurrence of gradient terms in phenome-
nological models for SMAs is not new and the reader is referred to Frémond [19] Arndt et al. [2], Fried
and Gurtin [20,30], Mielke and Roub́ıček [40], Roub́ıček [43,44], and [21] for examples and discussions
on non-local energy contributions.

The dissipation (pseudo-)potential is given by

R(λ̇, Ṁ) = Rλ

∫

Ω

|λ̇|dx+RM

∫

Ω

|Ṁ |dx

and is naturally related to the dissipation distance defined by

D(q, q̂) := Rλ

∫

Ω

|λ− λ̂|dx+RM

∫

Ω

|M − M̂ |dx,

for all q, q̂ ∈ L × M where, in order to shorten notation (here and in the following), we set q := (λ,M)
for all (λ,M) ∈ L × M.
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We shall mention that the dissipation associated with domain wall motion and magnetization rota-
tion is usually very small in MSMAs and hence sometimes neglected [15,26] when compared with the
mechanical dissipation due to variant reorientation. Namely, RM is often taken to be 0 in the latter. We
shall explicitly consider this situation in Sect. 4.3.

Before closing this section, let us record that the material constitutive relations system (2.3)–(2.4),
(2.2) together with quasi-static equilibrium (2.8)–(2.9) for the complete MSMA model can be rewritten
in the compact form

∂uΨ(t, u, λ,M) = 0 (2.10)

∂λ̇R(λ̇, Ṁ) + ∂λΨ(t, u, λ,M) 	 0. (2.11)

∂ṀR(λ̇, Ṁ) + ∂MΨ(t, u, λ,M) 	 0 (2.12)

where subdifferentials are here taken with respect to the corresponding L2 metrics.

3. Quasi-static evolution problem

We shall be concerned here with the solvability of the quasi-static equilibrium problem associated with
the above introduced material model. In particular, upon suitable data qualification, we focus on a suit-
ably weak notion of solution: the so-called energetic formulation (see [42]). Being given t ∈ [0, T ] �→
(f(t), g(t),H(t)) and an initial datum (u0, λ0,M0) an energetic solution of the quasi-static problem is a
function t ∈ [0, T ] �→ (u(t), λ(t),M(t)) ∈ U × L × M such that (u(0), z(0),M(0)) = (u0, z0,M0) and, for
every t ∈ [0, T ],

Ψ(t, u(t), λ(t),M(t)) ≤ Ψ(t, û, λ̂, M̂) + D(q(t), q̂) ∀ (û, λ̂, M̂) ∈ U × L × M (S)

Ψ(t, u(t), λ(t),M(t)) + DissD(q, [0, t]) = Ψ(0, u0, λ0,M0) −
t∫

0

〈�̇(s), u(s)〉ds− μ0

t∫

0

∫

Ω

Ḣ(s)·M(s)dxds

(E)

where DissD(q, [0, t]) is the total dissipation on [0, t] defined by

DissD(q, [0, t]) := sup

{
N∑

i=1

D(q(ti), q(ti−1)) : {0 = t0 < t1 < · · · < tN = t}
}

, (3.1)

the supremum being taken over all the partitions of [0, t].
For later convenience, we define the set of stable states at time t ∈ [0, T ] as

S(t) :=
{

(u, λ,M) ∈ U × L × M : Ψ(t, u, λ,M) ≤ Ψ(t, û, λ̂, M̂) + D(q, q̂) ∀ (û, λ̂, M̂) ∈ U × L × M
}
.

Our existence result reads as follows.

Theorem 3.1. (Existence for the quasi-static evolution) By assuming f ∈ W 1,1(0, T ;L2(Ω,R3)), g ∈
W 1,1(0, T ;L2(Γtr,R

3)), H ∈ W 1,1(0, T ;L2(Ω,R3)), and (u0, λ0,M0) ∈ S(0), there exists an energetic
solution for the quasi-static evolution problem.

We shall not report here a full proof of Theorem 3.1 as it may be readily obtained in the frame of the
by now classical existence theory for energetic solutions by Mielke and Theil [35,42]. We limit ourselves
in remarking that the sublevels of the energy Ψ(t, ·) are bounded in

H1(Ω; R3) × (
BV (Ω; Rm) ∩ L∞(Ω; Rm)

) × (
H1(Ω; R3) ∩ L∞(Ω; R3)

)
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hence compact with respect to the strong topology in L2(Ω; R3) × Lp(Ω; Rm) × Lp(Ω; R3) for all p < ∞.
In particular, the magneto-mechanical coupling term turns out to be continuous along energy-bounded
sequences converging with respect to the latter strong topology. The same holds true for the magneto-
static energy. Indeed, fix M ∈ M and let ϕk ∈ C∞

0 (R3) converge to vM strongly in H1(R3). We have

μ0‖∇vM‖2
L2(R3;R3) = lim

k→∞
μ0

∫

R3

∇vM ·∇ϕkdx = lim
k→∞

∫

Ω

M ·∇ϕkdx

≤ lim
k→∞

‖M‖L2(Ω;R3)‖∇ϕk‖L2(R3;R3) = ‖M‖L2(Ω;R3)‖∇vM‖L2(R3;R3).

Hence, the linear mapping M ∈ M ⊂ L2(Ω; R3) �→ ∇vM ∈ L2(R3; R3) is continuous. In particular, if
Mn ∈ M → M almost everywhere, then ∇vMn

→ ∇vM strongly in L2(Ω; R3) and the lower semiconti-
nuity of the magneto-static energy term follows.

It is well known that the energetic formulation of a rate-independent evolution has to be handled
cautiously out of the strictly convex energy case. Still, we aim at motivating our choice by stressing
the relevance of the energetic solubility notion as the natural limit within time-discrete approximation
procedures. In particular, we identify time partitions of [0, T ] with vectors of positive time steps τ . More
precisely, given τ = (τ1, . . . , τNτ

), the partition is

Pτ = {0 = t0τ < t1τ < · · · < tNτ
τ = T} with t0τ := 0, tiτ := ti−1

τ + τi, i = 1, . . . , Nτ .

For all vectors (w0, . . . , wNτ ), we define the constant interpolation function wτ on [0, T ] as

wτ (t) := wi for t ∈ [tiτ , t
i+1
τ ), i = 0, . . . , Nτ − 1.

Assume now to be given a sequence of partitions τ k with diameters |τ k| → 0. The classical time-dis-
cretization scheme for (2.10)–(2.12) is the following

(u0
k, λ

0
k,M

0
k ) = (u0, λ0,M0)

(ui
k, λ

i
k,M

i
k) ∈ Arg min

{
Ψ

(
tiτk

, û, λ̂, M̂
)

+ D(qi−1
k , q̂) : (û, λ̂, M̂) ∈ U × L × M

}

for i = 1, . . . , Nτk

The above incremental problems are solvable as the functional under consideration is, as already com-
mented, both coercive and lower semicontinuous with respect to the strong topology in L2(Ω; R3 × R

m ×
R

3). We shall remark that a by-product of the existence proof for energetic solutions is the following
convergence result for the above time-discrete scheme.

Corollary 3.2. (Convergence of time discretizations) Under the assumptions of Theorem 3.1 we have that,
for all t ∈ [0, T ],
(i) uτk

(t) → u(t) weakly in H1(Ω,R3),
(ii) λτk

(t) → λ(t) weakly star in BV (Ω,Rm) ∩ L∞(Ω,Rm) and strongly in Lp(Ω,Rm) for all p < ∞,
(iii) Mτk

(t) → M(t) weakly in H1(Ω,R3), weakly star in L∞(Ω,R3), and strongly in Lp(Ω,R3) for all
p < ∞,

(iv) DissD(qτk
, [0, t]) → DissD(q, [0, t]),

(v) Ψ(t, uτk
(t), λτk

(t),Mτk
(t)) → Ψ(t, u(t), λ(t),M(t)),

(vi) 〈�̇, uτk
〉 + μ0

∫
Ω
Ḣ·Mτk

dx → 〈�̇, u〉 + μ0

∫
Ω
Ḣ·Mdx in L1(0, T )

where t ∈ [0, T ] �→ (u(t), λ(t),M(t)) is an energetic solution of the quasi-static evolution problem.

4. Model asymptotics

We shall present here a sort of cross-validation of the proposed MSMA model by proving rigorously some
asymptotic result on parameters. In particular, we focus on the limits RM → ∞, Rλ → ∞. By letting the
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activation radius RM grow to ∞, we prove that the complete MSMA model reduces to the mechanical
Souza–Auricchio model. On the other hand, the limit Rλ → ∞ gives back the micro-magnetic model.

Eventually, as the mechanical dissipation in MSMA is generally much more relevant than the magnetic
one [46], we explicitly consider the limit RM → 0 in Sect. 4.3.

The asymptotic analysis is performed within the general frame of the Γ-convergence theory adapted
to rate-independent systems from [41]. Loosely speaking, the main result of [41] consists in a convergence
theorem for energetic solutions of approximating problems driven by energy and dissipation functionals
(Ψn,Dn) to an energetic solution of the limiting problem (Ψ∞,D∞). It is rather easy to observe that the
sole Γ-convergence of energies and dissipations is not sufficient in order to conclude for the convergence
of the respective energetic solutions and one is forced to ask for the upper semicontinuity of the sets of
stable states. This latter semicontinuity condition turns out to be the restrictive condition with respect
to applications and one is generally asked to construct a so-called mutual recovery sequence. We shall
provide the necessary details of these constructions in the following subsections. In particular, some slight
modification of the original argument of [41] is reported in Sect. 4.3.

In the forthcoming of this section, given any parameter-dissipation distance Dk : (L × M)2 → [0,∞]
for k ∈ N, we define the set of stable states related to (Ψ,Dk) at time t ∈ [0, T ] as the set

{
(u, λ,M) ∈ U × L × M : Ψ(t, u, λ,M) < ∞

and Ψ(t, u, λ,M) ≤ Ψ(t, û, λ̂, M̂) + Dk(q, q̂) ∀ (û, λ̂, M̂) ∈ U × L × M
}
.

Moreover, for any l �→ kl non-decreasing, we say that (tl, ukl
, λkl

,Mkl
) is a stable sequence related to

(Ψ,Dk) if

(ukl
, λkl

,Mkl
) is stable related to (Ψ,Dkl

) at tl and sup
l∈N

Ψ(tl, ukl
, λkl

,Mkl
) < ∞.

Finally, we say that (u, λ,M) is an energetic solution related to (Ψ,Dk) and the initial datum (u0, λ0,M0)
if (u(0), λ(0),M(0)) = (u0, λ0,M0) and, for all t ∈ [0, T ], (u(t), λ(t),M(t)) is stable related to (Ψ,Dk)
and the energy equality

Ψ(t, u(t), λ(t),M(t)) + DissDk
(q, [0, t]) = Ψ(0, u0, λ0,M0) −

t∫

0

〈�̇(s), u(s)〉ds− μ0

t∫

0

∫

Ω

Ḣ(s)·M(s)dxds

holds where DissDk
(q, [0, t]) is the total dissipation on [0, t] defined by (3.1) with Dk instead of D.

4.1. Mechanical limit: RM → ∞

Let (u0, λ0,M0) ∈ S(0). We recall that t �→ (u(t), λ(t)) is an energetic solution for the mechanical Sou-
za–Auricchio model (for some fixed magnetization M0) if (u(0), λ(0)) = (u0, λ0) and, for every t ∈ [0, T ],
the following stability condition and energy balance hold.

∫

Ω

ψSA(u(t), zλ(t))dx− μ0Kani

∫

Ω

(M0·Aλ)2dx+Kλ

∫

Ω

|∇λ(t)| − 〈�(t), u(t)〉

≤
∫

Ω

ψSA(û, zλ̂) − μ0Kani

∫

Ω

(M0·Aλ̂)2dx+Kλ

∫

Ω

|∇λ̂| − 〈�(t), û〉 + Dmech(λ(t), λ̂)

∀ (û, λ̂) ∈ U × L (Smech)
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∫

Ω

ψSA(u(t), zλ(t)) − μ0Kani

∫

Ω

(M0·Aλ(t))2dx+Kλ

∫

Ω

|∇λ(t)| − 〈�(t), u(t)〉 + DissDmech(λ, [0, t])

=
∫

Ω

ψSA(u0, λ0) − μ0Kani

∫

Ω

(M0·Aλ0)2dx+Kλ

∫

Ω

|∇λ0| − 〈�(0), u0〉 −
t∫

0

〈�̇(s), u(s)〉ds (Emech)

where we have denoted the mechanical dissipation distance by

Dmech(λ, λ̂) := Rλ

∫

Ω

|λ− λ̂|dx,

and defined the total dissipation DissDmech as in (3.1) with Dmech instead of D.
Let us denote by Dk

λ the dissipation distance defined by

Dk
λ(q, q̂) = Rλ

∫

Ω

|λ− λ̂|dx+ k

∫

Ω

|M − M̂ |dx

for every q = (λ,M), q̂ = (λ̂, M̂) ∈ L × M, and consider the dissipation distance D∞
λ : L × M −→ [0,∞]

defined by

D∞
λ (q, q̂) :=

{
Dmech(λ, λ̂) if M = M̂

∞ else.

Let f, g, and H be given as in Theorem 3.1 and denote by Sk
λ the set of stable states related to

(Ψ,Dk
λ). As we have assumed that (u0, λ0,M0) ∈ S(0) ⊂ Sk

λ(0) (definitely in k), Theorem 3.1 entails the
existence of an energetic solution (uk, λk,Mk) related to (Ψ,Dk

λ) and the initial datum (u0, λ0,M0) for
all k large enough. The main result of this subsection is the following.

Theorem 4.1. (Mechanical limit) Under the assumptions of Theorem 3.1, let (u0, λ0,M0) ∈ S(0)
and (uk, λk,Mk) be an energetic solution related to (Ψ,Dk

λ) and the initial datum (u0, λ0,M0). Then,
(uk, λk,Mk) converges pointwise (up to some not relabeled subsequence) to (u, λ,M0) and t �→ (u(t), λ(t))
is an energetic solution of the mechanical Souza–Auricchio problem, namely, a solution of (Smech)–
(Emech).

Proof. The assertion follows by an application of [41, Thm. 3.1] once we prove the following three facts:

• Γ-liminf inequality for Ψ:

Ψ(t, u, λ,M) ≤ inf
{

lim inf
l→∞

Ψ(tl, ukl
, λkl

,Mkl
) : (tl, ukl

, λkl
,Mkl

) is a stable sequence

related to
(
Ψ,Dkl

λ

)
and (tl, ukl

, λkl
,Mkl

) → (t, u, λ,M)
}
. (4.1)

• Γ-liminf inequality for Dk
λ:

D∞
λ (q, q̂) ≤ inf

{
lim inf
l→∞

Dkl

λ (qkl
, q̂kl

) : (tl, qkl
) → (t, q), (t̂l, q̂kl

) → (t̂, q̂)
}
. (4.2)
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• Upper semicontinuity of stable states:

For all stable sequence (tl, ukl
, λkl

,Mkl
) related to (Ψ,Dkl

λ ) such that

(tl, ukl
, λkl

,Mkl
) → (t, u, λ,M), ∀ (û, λ̂, M̂),

there exists a mutual recovery sequence (ûkl
, λ̂kl

, M̂kl
) such that

lim sup
l→∞

[
Ψ(tl, ûkl

, λ̂kl
, M̂kl

) + Dkl

λ (qkl
, q̂kl

) − Ψ(tl, ukl
, λkl

,Mkl
)
]

≤ Ψ(t, û, λ̂, M̂) + D∞
λ (q, q̂) − Ψ(t, u, λ,M). (4.3)

Ad (4.1): this follows from the lower semi-continuity of Ψ.
Ad (4.2): let (tl, ukl

, λkl
,Mkl

) and (t̂l, ûkl
, λ̂kl

, M̂kl
) be two stable sequences related to (Ψ,Dkl

λ ) such
that (tl, ukl

, λkl
,Mkl

) → (t, u, λ,M) and (t̂l, ûkl
, λ̂kl

, M̂kl
) → (t̂, û, λ̂, M̂). Two situations may occur.

If M �= M̂ , then k
∫
Ω

|Mkl
− M̂kl

|dx → ∞ so that we have

D∞
λ (q, q̂) ≤ lim inf

l→∞
Dkl

λ (qkl
, q̂kl

) = ∞.

If M = M̂ , then D∞
λ (q, q̂) = Rλ

∫
Ω

|zλ − zλ̂|dx = Dmech(λ, λ̂) and we have that

lim inf
l→∞

Dkl

λ (qkl
, q̂kl

) ≥ lim inf
l→∞

Rλ

∫

Ω

|λkl
− λ̂kl

|dx = Rλ

∫

Ω

|λ− λ̂|dx = D∞
λ (q, q̂).

Ad (4.3): let (tl, ukl
, λkl

,Mkl
) be a stable sequence related to (Ψ,Dkl

λ ) and (tl, ukl
, λkl

,Mkl
) →

(t, u, λ,M) and let (û, λ̂, M̂) ∈ U × L × M. We need to construct a mutual recovery sequence, namely a
sequence (ûkl

, λ̂kl
, M̂kl

) such that

lim sup
l→∞

[
Ψ(tl, ûkl

, λ̂kl
, M̂kl

) + Dkl

λ (qkl
, q̂kl

) − Ψ(tl, ukl
, λkl

,Mkl
)
]

≤ Ψ(t, û, λ̂, M̂) + D∞
λ (q, q̂) − Ψ(t, u, z,M).

If M �= M̂ , then D∞
λ (q, q̂) = ∞ and there is nothing to prove. Let us then assume that M = M̂ . Consider

the sequence (ûkl
, λ̂kl

, M̂kl
) = (û, λ̂,Mkl

). Then, we have that

lim sup
l→∞

[
Ψ(tl, ûkl

, λ̂kl
, M̂kl

) + Dkl

λ (qkl
, q̂kl

) − Ψ(tl, ukl
, λkl

,Mkl
)
]

= lim sup
l→∞

⎛

⎝
∫

Ω

ψSA(û, zλ̂)dx− μ0Kani

∫

Ω

(Mkl
·Aλ̂)2dx+Kλ

∫

Ω

|∇λ̂| +Rλ

∫

Ω

|zλkl
− zλ̂|dx

−〈�(tl), û− ukl
〉 −

∫

Ω

ψSA(ukl
, zλkl

)dx+ μ0Kani

∫

Ω

(Mkl
·Aλkl

)2dx−Kλ

∫

Ω

|∇λkl
|
⎞

⎠

≤
∫

Ω

ψSA(û, zλ̂)dx− μ0Kani

∫

Ω

(M ·Aλ̂)2dx+Kλ

∫

Ω

|∇λ̂| +Rλ

∫

Ω

|zλ − zλ̂|dx

−〈�(t), û− u〉 −
∫

Ω

ψSA(u, zλ)dx+ μ0Kani

∫

Ω

(M ·Aλ)2dx−Kλ

∫

Ω

|∇λ|

= Ψ(t, û, λ̂, M̂) + D∞
λ (q, q̂) − Ψ(t, u, λ,M).

Given the convergences (4.1)–(4.3), it is straightforward to check the remaining structure conditions,
equi-coercivity, and semicontinuity assumptions of [41, Thm. 3.1] and obtain that (u, λ,M) is an energetic
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solution related to (Ψ,D∞
λ ) and the initial datum (u0, λ0,M0). Moreover, as (uk, λk,Mk) is an energetic

solution related to (Ψ,Dk
λ) and the initial datum (u0, λ0,M0), one can prove that

sup
k∈N

DissDk
λ
(qk; [0, T ]) < ∞.

In particular, for all t ∈ [0, T ] we have

k

∫

Ω

|Mk(t) −M0|dx ≤ sup
k

Dk
λ(qk, [0, T ]) < ∞

so that Mk(t) → M0 strongly in L1(Ω; R3). In particular, M ≡ M0. Hence, we deduce that, (u, λ) solves
(Smech)–(Emech), namely, it is an energetic solution of the mechanical Souza–Auricchio model (along with
a fixed magnetization M0). �

4.2. Micro-magnetic limit: Rλ → ∞

Following the same strategy as in the previous subsection, we aim here at proving that the complete
MSMA model reduces to the micro-magnetic model by letting the mechanical activation radius Rλ tend
to ∞.

We shall be considering the magneto-elastic energy Ψme defined for every (u,M) ∈ U × M as

Ψme(t, u,M) :=
1
2

∫

Ω

ε(u):C:ε(u)dx− μ0Kani

∫

Ω

(M ·Aλ0)2dx+KM

∫

Ω

|∇M |2 +
μ0

2

∫

R3

|∇vM |2dx

− μ0

∫

Ω

H(t)·M(t)dx− 〈�(t), u(t)〉.

We say that t �→ (u(t),M(t)) is an energetic solution for the magneto-elastic problem if (u(0),M(0)) =
(u0,M0) and if, for every t ∈ [0, T ], the following stability condition and energy balance hold,

Ψme(t, u(t),M(t)) ≤ Ψme(t, û, M̂) + Dmagn(M(t), M̂) ∀ (û, M̂) ∈ U × M, (Sme)

Ψme(t, u(t),M(t)) + DissDmagn(M, [0, t]) = Ψme(0, u0,M0) −
t∫

0

〈�̇(s), u(s)〉ds− μ0

t∫

0

∫

Ω

Ḣ(s)·M(s)dxds

(Eme)

where the magnetic dissipation distance is defined as

Dmagn(M,M̂) = RM

∫

Ω

|M − M̂ |dx,

and the total dissipation DissDmagn is as in (3.1) with Dmagn instead of D.
Note that in the latter formulation (Sme)–(Eme), the two variables u and M are completely decoupled.

In particular, if (u,M) is an energetic solution of (Sme)–(Eme), then M is an energetic solution of the
classical micro-magnetic model, namely, for all t ∈ [0, T ],
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Ψmagn(t,M(t)) − μ0Kani

∫

Ω

(M(t)·Aλ0)2dx

≤ Ψmagn(t, M̂) − μ0Kani

∫

Ω

(M̂ ·Aλ0)2dx+ Dmagn(M(t), M̂) ∀ M̂ ∈ M, (Smagn)

Ψmagn(t,M(t)) − μ0Kani

∫

Ω

(M(t)·Aλ0)2dx+ DissDmagn(M, [0, t])

= Ψmagn(0,M0) − μ0Kani

∫

Ω

(M0·Aλ0)2dx− μ0

t∫

0

∫

Ω

Ḣ(s)·M(s)dxds. (Emagn)

Set now

Dk
M (q, q̂) = k

∫

Ω

|λ− λ̂|dx+RM

∫

Ω

|M − M̂ |dx

for all q = (λ,M), q̂ = (λ̂, M̂) ∈ L × M and

D∞
M (q, q̂) :=

{
Dmagn(M,M̂) if λ = λ̂

∞ else.

By letting Sk
M be the set of stable states related to (Ψ,Dk

M ), we have that (u0, λ0,M0) ∈ S(0) ⊂ Sk
M (0)

for k large enough. Then, Theorem (3.1) ensures that there exists (uk, λk,Mk) energetic solution related
to (Ψ,Dk

M ) and the initial datum (u0, λ0,M0). We have the following.

Theorem 4.2. (Micro-magnetic limit) Under the assumptions of Theorem 3.1, let (uk, λk,Mk) be an
energetic solution related to (Ψ,Dk

M ) and the initial datum (u0, λ0,M0). Then, (uk, λk,Mk) converges
pointwise (up to some not relabeled subsequence) to (u, λ0,M) and (u,M) is an energetic solution of the
magneto-elastic problem, namely a solution of the system (Sme)–(Eme). Hence, M is an energetic solution
of the micro-magnetic problem, namely a solution of the system (Smagn)–(Emagn)

Proof. Exactly as for the proof of Theorem 4.1, we shall exploit the general convergence theory of [41].
As the Γ-liminf inequality for Ψ (4.1) still holds, one is left with the proof of

• Γ-liminf inequality for Dk
M :

D∞
M (q, q̂) ≤ inf

{
lim inf
l→∞

Dkl

M (qkl
, q̂kl

) : (tl, qkl
) → (t, q), (t̂l, q̂kl

) → (t̂, q̂)
}
. (4.4)

• Upper semicontinuity of stable states:

For all stable sequence (tl, ukl
, λkl

,Mkl
) related to (Ψ,Dk

M ) such that

(tl, ukl
, λkl

,Mkl
) → (t, u, λ,M), ∀ (û, λ̂, M̂),

there exists a mutual recovery sequence (ûkl
, λ̂kl

, M̂kl
) such that

lim sup
l→∞

[
Ψ(tl, ûkl

, λ̂kl
, M̂kl

) + Dkl

M (qkl
, q̂kl

) − Ψ(tl, ukl
, λkl

,Mkl
)
]

≤ Ψ(t, û, λ̂, M̂) + D∞
M (q, q̂) − Ψ(t, u, λ,M). (4.5)

Now, the Γ-liminf inequality (4.4) follows analogously to (4.2). As for the upper semicontinuity check
(4.5) one may use the mutual recovery sequence (ûkl

, λ̂kl
, M̂kl

) = (û, λkl
, M̂).



356 A.-L. Bessoud et al. ZAMP

Hence, we are again in the setting of [41, Thm. 3.1]. In particular, (uk, λk,Mk) converges pointwise
to (u, λ,M) which in turn is an energetic solution related to (Ψ,D∞

M ) and the initial datum (u0, λ0,M0).
Exactly as in the proof of Theorem 4.1, this amounts to say that λ ≡ λ0 so that indeed (u,M) is an
energetic solution of (Sme)–(Eme). �

4.3. Non-dissipative magnetization limit: RM → 0

In MSMAs, the dissipation related to domain wall motion and magnetization rotation is usually observed
to be small compared to mechanical dissipation [15,26]. We shall hence conclude this asymptotics section
by focusing in the limit of non-dissipative magnetic behavior by letting RM → 0.

Letting δ = 1/k or δ = 0, we define the dissipation distance Dδ
λ as

Dδ
λ(q, q̂) = Rλ

∫

Ω

|λ− λ̂|dx+ δ

∫

Ω

|M − M̂ |dx

for all q = (λ,M), q̂ = (λ̂, M̂) ∈ L × M. Let Sδ
λ(t) denote the set of stable states related to (Ψ,Dδ

λ) at
time t. We have the following.

Theorem 4.3. (Non-dissipative magnetization limit) Under the assumptions of Theorem 3.1, let
(u0, λ0,M0) ∈ S0

λ(0) and (uδ, λδ,Mδ) be an energetic solution related to (Ψ,Dδ
λ) and the initial datum

(u0, λ0,M0). Then, (uδ, λδ,Mδ) converges pointwise to (u, λ,M) (up to some not relabeled subsequence)
which is an energetic solution related to (Ψ,Dmech) and the initial datum (u0, λ0,M0), namely the model
with no dissipation associated with M .

Proof. Once again, we aim at making use of the Γ-convergence theory for rate-independent processes of
[41]. As the semicontinuity (4.2) still holds, the analog in this setting to (4.2)–(4.3) reads

• Γ-liminf inequality for Dδ
λ:

Dmech(q, q̂) ≤ inf
{

lim inf
l→∞

Dδl

λ (qδl
, q̂δl

) : (tl, qδl
) → (t, q), (t̂l, q̂δl

) → (t̂, q̂)
}
. (4.6)

• Upper semicontinuity of stable states:

For all stable sequence (tl, ûδl
, λ̂δl

, M̂δl
) related to (Ψ,Dδ

λ) such that

(tl, ûδl
, λ̂δl

, M̂δl
) → (t, u, λ,M), ∀ (û, λ̂, M̂),

there exists a mutual recovery sequence (ûδl
, λ̂δl

, M̂δl
) such that

lim sup
l→∞

[
Ψ(tl, ûδl

, λ̂δl
, M̂δl

) + Dδl

λ (qδl
, q̂δl

) − Ψ(tl, uδl
, λδl

,Mδl
)
]

≤ Ψ(t, û, λ̂, M̂) + Dmech(q, q̂) − Ψ(t, u, λ,M). (4.7)

The Γ-liminf inequality for Dδ
λ is immediate and a possible choice for the mutual recovery sequence is

the constant sequence (ûδl
, λ̂δl

, M̂δl
) = (û, λ̂, M̂) for which we get

δl

∫

Ω

|Mδl
− M̂ |dx −→ 0

when δl → 0.
The degenerate character of Dmech is such that the general result [41, Thm. 3.1] is not directly appli-

cable in this case. In fact, the theory of [41] assumes that no degeneracy would be developed in the limit.
Here instead, the magnetization M passes from a dissipative to a non-dissipative behavior. This indeed
requires a (minor) modification of the argument of [41, Thm. 3.1] that we sketch here for completeness,
referring, however, the reader to [41] for all missing details.
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First of all, independently of δ one can prove that

sup
t∈[0,T ]

[
Ψ(t, uδ(t), λδ(t),Mδ(t)) + DissDmech(λ, [0, t])

]
< C.

Hence, by a generalization of Helly’s selection principle [41, Thm. A.1] we have that, at least for some
not relabeled subsequence, λδ(t) → λ(t) weakly star in BV (Ω; Rm) and strongly in Lp(Ω; Rm) for p < ∞
and all t ∈ [0, T ]. Moreover, further extracting t-dependent subsequences (uδt

k
(t), λδt

k
(t),Mδt

k
(t)) we find

limits

uδt
k
(t) → u(t) weakly in H1(Ω; R3),

Mδt
k
(t) → M(t) weakly in H1(Ω; R3) and strongly in Lp(Ω; R3) ∀p < ∞.

Note that the everywhere defined functions t �→ u(t) and t �→ M(t) need not be continuous nor measur-
able. Still, the stability of (uδ, λδ,Mδ) and the upper semicontinuity (4.7) entail that indeed (u, λ,M) is
a stable state related to (Ψ,Dmech) for all times. For all fixed t ∈ [0, T ], the upper energy estimate

Ψ(t, u(t), λ(t),M(t)) + DissDmech(λ, [0, t])

≤ Ψ(0, u0, λ0,M0) −
t∫

0

〈�̇(s), u(s)〉ds− μ0

t∫

0

∫

Ω

Ḣ(s)·M(s)dxds

follows at once by the analogous estimate at level δ, the lower semicontinuity of Ψ, and the Γ-liminf
inequality (4.7). Finally, the converse lower energy estimate follows by stability and [35, Prop. 5.7]. �
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